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ABSTRACT

This document contains an analytical derivation
and an empirical validation of a pseudcstate theory for
the approximation of three-body trajectories. Applica-
tion of the theory yields "overlapped conic' trajectories
characterized by error magnitudes only about 20 per-
cent as great (for typical lunar missions) as patched
conic trajectory errors. Executiontime and adaptabil-
ity to split boundary value problems are generally com-
parable, and in some cases the overlapped conic tech-
nique is superior to the patched conic method in both
respects. Only minor changes in coding should be re-
quired to incorporate the overlapped conic simulation

into existing patched conic coraputer programs. The

overlapped conic simulation is currently being incor-
porated into the TRW Analytic Return-to-Earth Pro-
gram- Moon Referenceunder MSC/1RW Task A-60. 1.
This document is submitted in partial fulfillment of
the obligations of MSC/TRW Task A-60. 1 for the Mis-

sion Trajectory Control Program, contract NAS9-8166.
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. .NOMENCLATURE

Definition

functional operator implying propagation of a given state
vector along a conic trajectory to the point of entrance
into a sphere of given radius

functional operator implying the propagation of a given
state vector along a conic trajectory to a given time
(i. e., solution of Kepler's problem)

- functional opzrator implying propagation of a given state

vector along a conic trajectory to the point of exit from
a sphere of given radius

functional operator implying the conversion of a given

. selenocentric state vector to geocentric coordinates

functional operator implying the conversion of a given
geocentric state vector to selenocentric coordinates

functional operator irplying linear propagation of a
given state vector to the point of entrance into a sphere

~of given radius

functional operator implying linear propagation of a
given state vector to a given time

functional operator implying linear propagation of a
given state vector to the point of exit from a sphere of
given radius

moon's sphere of influence

functional operator implying the transformation of a
given selenocentric real state vector into a geocentric
prepericynthion pseudostate

functional operator implying the transformation of a
given geocentric prepericynthion pseudostate into a
selenocentric real state vector

functional operator implying the transformation of a

given postpericynthion pseudostate into a prepericynthion

pseudostate
pseudostate transformation sphere

geocentric position vector of spacecraft
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NOMENCLATURE (Continued)

Definition
selenocentric position vector of spacecraft
radius of PTS
radius of MSI
time
geocentric velocity vector of spacecraft
selenocentric velocity vector of spacecraft
functional operator implying the transformation of a
given prepericynthion pseudostate into a postpencyntlnon
pseudostate
functional operatcr implying transformation of a given
selenocentric real state vector into a geocentric post-

pericynthion pseudostate

functional operator implying transformation of a given
geocentric postpericyvnthion pseudostate into a seleno-

" centric real state vector

true anomaly

gravitational parameter

geocentric velocity vector of moon

‘geocentric position vector of moon

ge0centr1c state_yector of spacecraft (has the compo-

nents t, R, and V)

eelenocentrlc state vector of spacecraft (has the compo -~
nents t, T, and ¥)

standard deviation (square root of variance)
right ascension of ascending node

argument of perigee
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Definition
state vector resulting from two-body (conic) propagation
prepericynthion pseudostate

postpericynthion pseudostate

earth
moon
sphere entrance point

sphere exit point
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i. INTRODUCTION AND SUMMARY

1.1 PROBLEM STATEMENT

Precise determination of a spacecraft trajectory in the earth-moon
system requires numerical integration of the differential equations of
motion. Since numerical integration is a time-consuming process, two-
body (conic) segments are used extensively to approximate three-body

motion during preliminary analyses of lunar mission:. In the conventional

"method of approximation, a '"mc m's éphere of influence' (MSI) is defined.

The MSI is centered on, and moves with, the moon. OQutside the MSI,
lunar gravity is completely ignored, and the spacecraft motion is described
by a geocentric conic. Inside the MSI, earth gravity is ignored {except
indirectly as it affects the motion of the moon), and the spacecraft motion
is described by a selenocentric conic. If a trajectory is propagated into
the MSI, the geocentric conic state vector at the entry point is converted

to selenocentric coordinates. The converted state vector defines the sele-
nocentric conic that is used to describe all subsequent motion inside the
MSI. The elements of the true osculating selenocentric conic (defined by
the true instantaneous state vector) are continuously perturbed by the
earth; whereas, the patch-conic elements are held fixed. Therefore, there
is a cumulative error in the patched-conic state vector as it is propagated
into the MSI. This error can be reduced by making the MSI smaller, but
ouly at the ¢xpense of increasing a similar error in the geocentric conic
state vector. Selection of an MSI radius requires a compromise to mini-
mize the combined error that results from ignoring lunar perturbations on
the geocentric conic and earth perturbations on the selenocentric conic.
The compromise value of MSI radius usually is somewhere between 9 and
14 earth radii.

{.2 OVERLAPPED CONIC TECHNIQUE

In the overlapped counic technique, a moon-centered ''pseudostate
transformation sphere' (PTS) is dcfined. As in the case of the MSI, lunar

perturbations of the geocentric conic are ignored outside the PTS, whose
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radius is typically about twice as large as the MSI radius. In contrast to

the patched conic method, the geocentric conic is extended into the

sphere, rather than being terminated at the PTS surface. Instead of
defining a region of exclusive lunar influence, the PTS defines a region

wherein geocentric conic states are regarded as pseudostates that are

related to their real counterparts by a reversible transformation algo-
rithm. As illustrated in Figure {-1, real prepericynthion stales are
related to a geocentric prepericynthion conic, and real postpericynthion
states are related to a geocentric postpericynthion conic. The pseudo-
state is discontinuous at the real pericynthion passage time, but the real
(transformed) state is continuous at all times, including the PTS entry

and exit times.

The transformation of a geocentric prepericynthion pseudostate to
its real selenocentric counterpart is a three-step process requiring .
(1) conversion of the pseudostate from geocentric to selenocentric coordi-
nates, (2) linear propagation of the converted state backward to the PTS
surface, and (3) selenocentric conic propagation forward to the original
pseudostate time. Transformation of a geocentric postpericynthion pseu-

dostate is similar, except tha* the direction of propagation is reversed in

- steps (2) and (3).

" To propagate a real selenocentric state vector to another point on
the real trajectory, it is necessary first to transform it into a geocentric
pseudostate vector. For a prepericynthion state, the required transfor-
mation steps are (1) selenocentric conic propagation backward to the PTS
surface, (2) linear propagation forward to the original state time, and
(3) conversion of the resulting pseudostate from selenocentric to geocent
coordinates. The transfor.mation process is identical for a postpericyn-
thion case, except the direction of propagation is reversed in steps (1) and
(2). After the appropriate geocentric pseudostate is defined, it is prop-
agated along a geocentric conic to the desired time or position. If the
propagated pseudostate lies outside the PTS, it is taken to be a real geo-
centric state. Otherwise, it is transformed to a real selenocentric state

by the process defined in the preceding paragraph.
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If a real prepericynthion >tate vector is to be propagated beyond
pericynthion to a real postperit ynthion state, the geocentric pseudostate
must be redefined at or near the real pericynthion passage time. Lei i:J
be an estimate of the passage time (it does not have to be very accurate,

+ one hour is close enough). The original pseudostate is propagated along
the geocentric prepericynthion conic to time ty Then the propagated
pseudostate is (1) converted to selenocentric coordinates, (2) propagated
linearly backward to the PTS surface, (3) propagated forward along a
selenocentric conic to the PTS surface (i. e., from the hyperbolic entry
point to the exit point), (4) propagated linearly backward to time t 7 and
(5) converted back to geocentric coordinates. The redefined pseudostate
lies on the geocentric postpericynthion conic, and the geocentric propa-

gation of the pseudostate is continued from this point.

Trajectory approximations that result from applying the pseudostate
theory summarized in the preceding four paragraphs are referred to as
"overlapped conics.' This terminology is adopted because geocentric and
selenocentric conic segments are overlapped within the PTS, in the sense
that the geoc.entric and the selenocentric two-body differential equations of

motion are integrated separately, but over identical time intervals.

The overlapped conic technique affords a better dynamic simulation
of three-body motion than the patched conic technique and yields errors
only about 20 percent as great (in the case of Tunar missions) as corre-
ponding patched conic errors. Execution time and adaptability to split
boundary value problems are generally comparable, and in some cases the
overlapped conic technique is superior to the patched conic method in both
respects. The overlapped conic simulation can be incorporated into exist-
ing patched conic computer programs with only minor changes in coding;
therefore, rapid implementation of the overlapped conic technique is

possible.

Although derived specifically for the simulation of lunar missions,
the general pseudostate theory (upon which the overlapped conic method is

based) is applicable to anv th_.« -body system in which the tertiary body

c§ has negligible mass and hyperbolic enex»« lative to the secondary body,
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provided the mass of the primary body is quite large relative to the mass
of the secondary body. It is believed, therefore, that the overlapped conic
technique can be applied to interplanetary trajectories. An empirical
determination of the optimum PTS radius would be required for each planet

involved.

The theory described in this document represents an extension and
a generalization of the basic transformation algorithm described in
Reference 1. The transformation equations presented are derived from

basic theoretical considerations; whereas, the derivation in Reference 1

was based primarily an intuitive logic.
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2. DERIVATION OF EQUATIONS

2.1 EQUATIONS OF EARTH-RELATIVE MOTION

If all forces except the central gravitational forces of the earth and
the moon are ignored, the earth-relative motion of a spacecraft in the

earth-moon system is governed by the three-body differential equation
R=-p R/RS - p 703 - u_770° (1)
e m mP /P

where the inertial position vectors ﬁ, T, and -6 are defined in Figure 2-1.

2.1.1 True Earth~Relative Trajectory

Given an initial geocentric state vector
the velocity and position components of any other true state vector

on the same trajectory are defined by the integral equations

t t t
Vy - ftJ(‘HeR/R Ja ft (sl ft [henfto)ae + ;o

I 1 1
and
t_ [t t.rt
R =7 (-p. R/R3)dt at+| 7 (—p ?/r3)dt dt
JoJe Je e g Je \ ™

17 1 J

tr(t - 3 —_
+ (-Mmp/p )dt dt + (tJ. - tI) VI + RI . (5)
t JY

There are no known general closed-form solutions for the first two terms

in Equations (4) and (5); therefore, numerical integration is required to

define the spacecraft trajectory accurately.




MOON

SPACECRAFT

Figure 2-1. Vector Position Diagram
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2. 1. 2 Geocentric Conic.Trajectory

The sum of the last two terms in Equation (1) is very small when the
spacecraft is very near the earth. If the spacecraft is near the earth
throughout the time interval of interest, -its motion can be assumed to be

governed by the two-body differential equation

<$c C c\3

R"=- |J.eR /(R ) ’ (6)
and the conic state vector

("

c _ <c =C
Iy = (t;r' Ry VJ)

can be assumed to be a good estimate of the true state vector Ty

-

The conic velocity and position vectors V and ﬁ; (obtained from

J
closed-form equations) represent the integral solutions -
t ' 3
Ve = J[—p. R¢/(RS) ]dt +V (8)
J e I .
t
I
and
t. [t
=wc_|IT  =c,nc 3] -
,_Rj—ﬁ -LL-p.eR /(RS) dtdt+(tJ-tI)VI+RI. (9)
R S | .

of Equation (6).
2.2 EQUATIONS OF MOON-RELATIVE MOTION

The moon-relative motion of the spacecraft (again, ignoring all
forces other than the central gravitational forces of the earth and the

.aoon) is governed by the differential equation
Feop T2 ue'ﬁ/Pc" +u /o> . (10)

Equation (10) is no more and no less correct than Equation (1); however,

it is often more convenient to use when the spacecraft is near the moon.




( 2. 2.1 True Moon-Relative Trajectory @

Given an initial selenocentric state vector
( oy = (tr Tp "71) ' (1)
the velocity and position components of the true state vector
o5 = (tr Ty VJ) (12)

are defined by the integral equation

t t t
¥ = J(-p ?/r3)dt " J(-u ‘R/R3)dt n J(p. 3/p3)dt T (13)
t m t. \ € t. \ €

-

1 I

d .
' Tt [t t [t
¥r= J (—p. 'r’/r3)dt at+|J (-p. R/R3)dt dt
t, je V™ t. Je.\ © ;
171 1771 T
tr [t .3 ,
+ pcplp At At + {to - 4TV + T . (14) |
17 ;

Again, nume:ical integration is necessary to define an accurate moon-

an

relative trajectory, because there are no known general closed-form solu-

tions for the first two terms in Equation (13) and in Equation (14).

2. 2.2 Selenocentric Conic Trajectory

When the spacecraft is very near the moon, the sum of the last two
terms in Eciuation (10) is very small. If the spacecraft stays near the
moon throughout the time interval of interest, its motion can be assumed
to be governed by the two-body differential equation

(; » :Iéc = - pm?c/(rc)3 , (15)




and the conic state vector
. Y
c _ «C C\
CJ' - (tJ’ rJ‘l VJ') (16)

t

can be assumed to be a good estimate of the true state vector 0y

The conic velocity and position vectors '\'rf; and ?3: represent the inte-

gral solutions,

.;c 1‘;J +C ;. C 3 Lo '

v = -p /() fdt + ) . (17)
. t ©

T
and
-bC' ﬂtJ t ‘->C C3 . .. -
= “K T [(x7). |dt dt + (tJ - "‘I)VI T, (18)
e tI tl. . - .

of the d1fferent1a1 equa.tmn (15).

2.3 OVERLAPPED CONIC APPROXIMATION OF A TRANSEARTH -
TRAJECTORY

Given the selenocentric state vector

o = (i;I, 7, vI) - ©(19)

of a spacecraft initially near the moon, assume it is required to calculate

an estimate of the geocentric state vector

on the earth approach trajectory at a given geocehtric distance RI.{’ where
RK = I-ﬁKI £< oK’ Neither Equaﬁon (6) nor Equation (15) is valid over the
entire trajectory. However, Equation (6) is reasonably accurate for
describing the motion of the spacecraft after the selenocentric distance r

becomes greater than some (as yet, undetermined) distance re.

Therefore, it will be attempted to derive an accurate approximation

%X ( < -R.*X v*x) (21)

tx* X' Vx
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of the spacecraft's true geocentric state vector EX at the time of exit from

a selenocentric sphere of radius re. This state vector can then be propa-
(- gated along a geocentric conic to the desired geocentric distance RK. The

selenocentric sphere defined by r, will be called {for reasons to be

explained later) the '"pseudostate transformation sphere' (PTS).

The evaluation of Ei(x will be accomplished by approximate integra-
tion of the three-body differential equation (i). The problem of integration .
will be simplified by ignoring the third term in Equation (1). The third
term can be integrated quite easily in closed form; therefore, its omission
is not absolutely necessary for purposes of mathematical simplification.
However, its magnitude is quite small relative to the magnitudes of the
first two terms, and its omission usually does not have a very great effect

on the accuracy of the solution. For ''reasonable'' lunar mission trajec-

tories (i. e., those in which the spacecraft approaches the moon from the

direction of the earth and departs in the direction of the earth), omission

of the third term tends to compensate for inaccuracies in the approximate

integré.tion of the first two t.e'rms, thereby éctuélly increasing the accuracy @
of the solution. '

pewrrTT

2,3.1 Incomplete Evaluation of PTS Exit Velocity Vector

The velocity component of Z’;{X is given by

Tixe | X - B/RNat + [ X " T/ro)\at + V, . (22)
X ¢ e ¢ m I
1 I

It is assumed that the geocentric position and velocity vectors of the moon
at time tI (or any other time) are available from a lunar ephemeris.
Therefore, the last term in Equation (22) can be found merely by.convert-

ing the initial selenocentric velocity vector to geocentric coordinates, thus

VI =V +¥; - (23)
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An approximate value for the second term in Equation (22) can be
found by considering Equation (17). Inside the PTS (if its radius r is not
too large), the selenocentric conic position vector ¥° (defined by conic
propagation of the initial selenocentric state vector oI) is approximately

equal to the true position vector ¥. Therefore,

t
ﬁ X(—pm'r'/rs)dt =V - ¥ s (24)
1

where '\7;2 is the velocity component of the state vector

0% = (tx, To v;’{) (25)
defined by

.- c ) . .

Ox = Cx(P'ms O rs) . (26)

The functional operator Cx implies propagation of the initial state vector
o1 along a selenocentric conic to the point of exit from a sphere of radius

r

.
" Substitution of (24) and (23) into (22) yields
i [Px =, 3 %X
Ve = (—u R/R )dt +V (27)
e I
t i
1
where
==X =™ -»C

The evaluation of V)?' s incomplete because a closed-form expres~

t
sion for the integral[

x(—p.eﬁ'/R‘g)dt appearing in (27) has not yet been
t

I
derived. Complete evaluation of -V’ﬂ;? will be deferred until after a partial
evaluation of the PTS exit position vector ﬁ;x has been accomplished.

2-7
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2.3.2 Incomplete Evaluation of PTS Exit Position Vector

*
The position component of Zxx is given by

( t, [t ty [t
- - -
Rge|* (-p. R/R3)dt at+ | ¥ (—p. r/r3)dt dt
t. |t e e Jt m
A 1 4

+ (tx - tI) V +R, . (29) .

The initial geocentric position vector is'given by

Rp=eptrp (30) ;

N

and the initial geocentric velocity vector VI has already been defined by )

Equation (23).

An approximation of the second term in Equation (29) is found by
considering the selenocentric conic equation (18). Again because the sele-
nocentric conic position vector T¢is a good approximation of the true @

position vector T inside the PTS,

ﬁ:x[t: (—Hm?/r3)dt dt = (‘f;( - ?I) - (tx - tI) v (31)

When (31), (30), and {23) are substituted into (29),

t t

=X ("% =, 3 kX | kX

Ry =/ f (-p.eR/R )dt dt + (tx - tI) vV, +tR{ (32)
t t
I 1

where .\;xix has already been defined by Equation (28), and where '%
kX Y -=C =C
( RS =+ [rx - (tx - tI) vx]. (33)

e

-l

The quantities tX’ 'f)cc, and Vy are components of the state vector °§(
defined by (26).

2-8
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2.3.3 The Pseudostate Propagation Hypothesis

Comparison of the approximate integral equations (which were
derived earlier and are repeated here for convenience) describing the

PTS exit velocity and position vector

t
P —p i
V’XX zf X (-p. R/R3)dt P VX (27)
e I
¢
1
B o x [/ R/R3at at + [to - £ )T + B*X (32
x ¥, e ('x 1) V1 1 )
1 4 :

with the integral equations describing state vector propagation along a

geocentric conic trajectory

—=C 1-'J' - C 3 -
V= - R°/(R) } dt + V; (8)
Y
RE - 7 [* [— xC/ RC)S]dt at + (t. - |V, + R | (%)
7], Lhe ( (J 1) Vit Ry )
1 /4

suggests, as a hypothesis, that the operation
*X _ *X
Ly 7 Ct(“e’ Ty o tx) (34)

would yield a good approximation of the true PTS exit state vector Ty
in (34), the functional operator Ct implies propagation of the initial

"pseudostate' vector

*¥X _ ¥ kX
21 =(t1'R1’V1) (35)

awong a geocentric conic trajectory to the given time ty
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If this hypothesis is correct, then the desired estimate of the true
geocentric state vector ZK can be obtained by

*X *X

P = Ok T By) (36)

where the functional operator CN here implies propagation of )_'.'x;{x along a
geocentric conic to the point of entry into a geocentric sphere of radius

RK’
problem. The sequential operations implied by (34) and (36) can be

It is not necessary to actually calculate Z’;g( to solve the example
replaced by the single operation

*X _ *X
Z'K = CN(I“'e: ZI ’ RK) ’ (37)

which yields precisely the sam= final state vector with much less compu-

tation effort.

The validity of the pseudostate propagation hypothesis depends on
how closely the geocentric pseudostate position vector E‘.*X (as defined by
the geocentric conic propagation of Z,;x) agrees with the true position vec-
tor R between times t and tye Ultimately, the hypothesis must be vali~
dated by empirical results. However, some insight as to the probable
range of validity can be obtained from a qualitative analysis of the differ-
ence between real and pseudostate positions at the initial state time tI.
This can best be accomplished by converting the geocentric pseudostate to

selenocentric coordinates, yielding

*X _ +*X kX
where
%X .. =C -»C
T, =Ty~ (tx - tI) Vx (39)
and
X  .c

Equations (39) and (40) result from subtracting the geocentric positiun

- YW et
and velocity vectors of the moon from RIX anl V,;x, as defined in

Equations (33) and (28), respectively.
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Equations (39) and (40) imply that g"IX is obtained simply by a linear

propagation of c;c (which was obtained by propagating o along a seleno-
centric conic to the PTS exit point) backward to the original state time tye

This linear propagation can be described by using the functional notation

czx = Lt(";(’ tI) , (41)

which implies the operations described in (39) and (40).

In selenocentric crordinates, the pseudostate position lies.on a
straight line that is tangent, at the PTS exit point, to the osculating sele-
nocentric hyperbola defined by Oy The distance frora the PTS surface to
the pseudostate position is equal to I(tx - tI)'\7§( .

Figure 2-2 illustrates schematically the pseudostate position for five
different positions of the real initial state. It is apparent that as tX - tI)
increases, the distance between the real initial position I and the pseudo-
state initial position I*X increases. .In.particular, the pseudostate initial
positions Iix and I*SX differ considerably frofn their real counterparts 14
anda 15, which lie on the prepericynthion leg of the osculating hyperbola.
Because of the significant divergence of the pseudostate position from its
real counterpar.t on the prepericynthion leg, the propagation of the geocen-

N
tric pseudostates EL)}( or ZI;( along a geocentric conic can not be experied

to yield an accurate approximation of the true PTS exit state vector ZX.

The pseudostate propagation hypothesis can be extended to cover
prepericynthion cases. However, the extended hypothesis involves the use
of a prepericynthion geocentric pseudostate Z,::N (as distinguished from the
postpericynthion geocentric pseudostate 2; ) ;vhich has not yet been
defined. It will be helpful to explore some of the implications of the pseu-
dostate propagation hypothesis, as applied strictly to postpericynthion
states, before proceeding with the extension of the hypothesis to preperi-

cynthion cases. Therefore, the prepericynthion pseudostate definition will

be deferred temporarily.




Figure 2-2. Relation Between Real Position and Postpericynthion
Pseudostate Position (Selenocentric Coordinates)
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2. 3.4 Implications of the Propagation I-Iypotheéis

If the pseudostate propagation hypothesis described in the previous
section is valid in general for solutions of the type of problem given as an
example (i. e., for estirnation of a geocentric state vector ZK located out-
side the PTS, given any real postpericynthion state vector g i "= the
PTS), then by implication it is valid for the propagation of any . post-
pericynthion state vector to any point (inside or outside the PT 3, ¢ the
same real postpericynthion trajectory. The reasoning is straighforward:
if the same estimate of ZK is obtained for any true state vector O‘I (where
1:I <tx) on a given real postpericynthion trajectory, the geocentric conic
along which the pseudostates are propagated must be unique. Furthermore,
there must be a one-to-one correspondence between the real state vectors

and the pseudostates defined by the geocentric conic.

Now, if real postpericynthion state vectors are related to pseudo-
states on a unique geocentric postpericynthion conic by a one-to-one trans-
formation algorithm, then it follows that real prepercynthion state vectors
must be related (by a similar algdrithrn) to pseudostates on a geocentric
prepericynthion conic. The nature of the prepericynthion transformation
can be deduced from a mathematical derivation similar to that contained
in Sections 2. 3. 1 through 2.3.3, or more easily by studying the g'eémetri:
cal aspects of the postpericynthion transformation and applying the basic
principles to the prepericynthion case. The geometrical properties of the
prepericynthion transformation are illustrated in Figure 2-3, which is the

prepericynthion analogue of Figure 2-2.
2.4 THE PSEUDOSTATE THEORY

The following subsections define a pseudostate theory for approxi-
mating the three-body trajectory of a spacecraft in the earth-moon system.
It is assumed that the energy of the spacecraft is hyperbolic with respect

to the moon.

The theory is a formal statument of logical inferences drawn from

the analysis presented in Section 2. 3. Iti based on the assumption that

the pseudostate propagation hypothesis described in Section 2. 3. 3 is valid.
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Relation Between Real Position and Prepericynthion

Figure 2-3.
Pseudostate Position (Selenocentric Coordinates)
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The definition of the theory is made prior to the validation of the under-
lying assumption, because the ultimate validation rests on empirical data

generated by application of the theory.

The six transformation functions required for application of the
pseudostate theory to state vector propagation problems are defined in
Appendixes C, D, and E. These six functions are described by use of the

lower-order function definitions contained in Appendixes A and B.

The theory is defined specifically as it applies to the motion of a
spacecraft in the earth-moon system. However, it is applicable to the
motion of any tertiary body in any three-body system, provided the tertiary
body has negligible mass and hyperbolic energy relative to the secondary
body, and provided the mass of the secondary body is quité small relative

to the mass of the primary body.

2.4.1 The Pseudostate Traﬁsformation Sphere

The earth-moon system is divided into two regions separated by the
surface of a pseudostate transformation sphere (PTS). The PTS is cen-
tered on and moves with the mooﬁ. From analytical considerations, the
optimum radius of the PTS is expected to be approximately half the mean
geocentric distance of the moon; the exact radius is to be determined

empirically.

2.4.2 Pseudostate Vectors

For every real spacecraft state vector, there exists one or two
pseudostate vectors. Cutside the PTS, there is a one-to-one correspon-
dence between real states and pseudostates; specif. .ly, the geocentric

pseudostate is identically equal to its real counterpart.

Inside the PTS, every real state is related, (1) to a unique preperi-
cynthion pseudostate by a reversible prepericynthion pseudostate transfor-
mation algorithm, and (2) to a unique postpericynthion psaudostate by a

reversible postpericynthion pseudostate transformation algorithm.



2.4.3 Loci of Pseudostate Vectors

For a given real spacecraft trajectory, there exist two unique geo-

centric conic trajectories:

1) A prepericynthion geocentric conic, which is the locus
of geocentric prepericynthion pseudostates ‘

2) A postpericynthion geocentric conic, which:is the locus
of geocentric postpericynthion pseudostates

2.4.4 State Vector Propagation

If any real state vector is to be propagated over a given interval of-
time to define anc*her state vector on the real trajectory, it must first be
transformed into a geocentric pseudostate and then propagated along the
appropriate geocentric conic for the same interval of time. The propa-
gated real state vector is obtained by performing a pseudostate-to-real

transformation of the propagated pseudostate.

Real prepericynthion state vectors are defined by propagating the
prepericynthion pseudostate along the geocentric prepericynthion conic,
and real postpericynthion state vectors are defined by propagating the
postpericynthion pseudostate along thé geocentric postpericynthion conic.
If it is necessary to propagate a pseudostate beyond the real pericynthion
passage time, the pseudostate must be redefined (i. e., transformed from
a prepericynthion pseudostate to a postpericynthion pseudostate, or vice

versa) at or near the time of real pericynthion passage.

st
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3. EMPIRICAL VALIDATION

To test the pseudostate propagation hypothesis of Section 2. 3. 3 (and
the pseudostate theory derived from it), overlapped conic transearth tra-
jectories were computed for a set of real selenocentric initial state vec-
tors. As indicated in Figure 3-1, the total flight time to perigee ranged
from approximately 27 hours to 167 hours. State -rectors defining seleno-
centric posigrade and selenocentric retrograde motion were included in
the test set. Pericynthion altitudes ranged from near zero to approxi-

~

mately 4 earth radii.

A few (about half a dozen) representative cases were selected initi-
ally to be used for an empirical determination of a suitable value for the
PTS radius. Based on this preliminary investigation, a value of r = 24
earth radii was selecied, and this value was used in all subsequent over-
lapped conic trajectory computations. This is not an optimum value for
all lunar mission simulations (Reference 2), but it appears to give very

good results for a wide range of transearth trajectories.

After fixing the PTS radius at 24 earth radii, overlapped conic prop-
agation errors in several geocentric trajectory parameters (judged to be
most significant in transearth trajectory simulations) were determined for
each test case. These errors are plotted in Figures 3-2 through 3-5,
along with errors resulting from competitive methods of three-body tra-
jectory approximation. All errors in these figures are measured relative
to precision values obtained from a highly accurate computer program that
numerically integrates the perturbing accelerations arising from earth
oblateness and solar gravitational influence, as well as the central gravi-
tational accelerations of the earth and the moon. The numerical integra-
tions were repeated, with earth oblateness and solar perturbations zeroed
out, in a limited number of cases. This was done to obtain estimates (the

lowermost dashed curves in Figures 3-2 through 3-5) of the effects of

earth oblateness and solar perturbations on the total propagation error.
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As indicated in FiAgures 3-2 through 3-5, the overlapped conic errors;
are generally only about 20 percent as great as corresponding patched
conic errors. (Approximately the same degree of improvement has been
documented, for translunar cases and a fixed PTS radius, in Reference 3.)
This is felt to be extremely significant, because the overlapped conin
method and the patched conic method are comparable in terms of execution
time and their adaptability to the solution of split boundary value problems.
(In some cases, the overlapped conic is superior in both respects.) The
necessary computations are also very similar, which means that only
minor coding changes are required to incorporate the overlapped conic

model into existing patched conic trajectory computer programs.

Relative to the Jacobi calibration of conventional patched conics, (as
implemented in the Moon-Centered Return-to-Earth Program of the Apollo
Real Time Computer Complex (RTCC), and as described in Reference 4),
the overlapped conic also offers a significant improvement in accuracy.

As indicated in Figures 3-3 and 3-5, this is particularly true of flight-time
and geocentric inclination errors. The Jacobi calibration, at least as it

is implemented in the RTCC, creates a state-vector discontinuity at the
conic patch point. This discontinuity, which does not occur in the case of
overlapped co: ic simulation, would be highly unsatisfactory in some

applications.

In a few test cases, errcrs resulting from use of the hybrid patched
conic technique (Reference 5) are shown for comparision in Figures 3-2
through 3-5. Although an insufficient number of Hybrid Patched Conic
Technique (HPCT) error data points were obtained to justify the estimation
of 20 error limit curves (as was done for the other three-body approxi-
tion methods), the HPCT propagation errors are generally only about one-
half to one-third as great as corresponding overlapped conic errors,
However, the greater accuracy of the HPCT is expected to be at least
partially offset by longer execution time on the average. In any event, the

overlapped conic method has a significant advantage over the HPCT in

terms of its adaptability to the solution of split boundary value problems,
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The advantage of the overlapped conic model over the patched conic
is not limited to improvements in the accuracy of geocentric trajectory
parameters. For instance, in the case of prepericynthion initial states, a
critical selenocentric trajectory parameter is the predicted pericynthion
altitude. When conventional conic approximations are used, the predicted
pericynthion altitude is the pericynthion altitude of the osculating seleno-
centric conic defined by the initial state vector. Since the elements of the
osculating conic are continuously perturbed py the earth, an osculating
conic prediction can be very inaccurate if it is made several hours before

pericynthion passage.

Overlapped conic predictions of pericynthion altitude, for a typical
lunar approach trajectory, are compared in Figure 3-6 with the true value
and with predictions based on the conventional conic approximation. The

accuracy advantage of the overlapped conic method is obvious.
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Figure 3-6. Comparison of Pericynthion Altitude Predictions
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APPENDIX A
STATE " ECTOR CONVERSION FUNCTIONS

A-1 CONVERSION FROM SELENOCENTRIC TO GEOCENTRIC
COORDINATES

a) Functional notation: E; =G (U;;)

b) Input: o;; = (t#, ?;;, V;;)
7/

c) Output: Z; = (t#, —li;, V;)

d) Computations:

t#-_-'t#
RIEL R

—
Y

ot _ -t
V#— v#'i' i

e) Comments:

The symbols # and t represent any subscript and

superscript,
A-2 CONVERSION FROM GEOCENTRIC TO SELENOCENTRIC
COORDINATES

a) Functional notation: 0; =g ! (E;;;)

b) Input: E;;: (‘c#, —I{;, V;;)

7

c) . Output: o; = (t#, ?:);, '\'f’;;)




d) Computations:
Y%= %

-t

T4=Ry- 0y

e) Comments;

The symbols # and t represent any subscript and

superscript,

. e




f APPENDIX B

STATE VECTOR PROPAGATION FUNCTIONS

( B-1 LINEAR PROPAGATION TO A SPECIFIED TIME

a) Functional notation: 0, = Lt (01, tz)
b) Input: tz; 0y = (ti’ Ty v1>
c) Output: 0, = ~(tz, T VZ)

d) Comgputations:

r2=r1+(1:2 -ti) v1

B-2 LINEAR PROPAGATION TO SPHERE ENTRANCE POINT

a) Functional notation: O‘N = LN (01, rs)

b) Input: r; 0y = }(tl' Ty vi)

c) Output: oN = (tN’ N VN)

d) Computations:

('\ tN=ti+At
our __-. -
rN--r1+'Atv1
H




e) Comments:

Negative radicand in At equation means line does not

/ intersect sphere (possible only when ry > rs).
B-3 LINEAR PROPAGATION TO SPHERE EXIT POINT il
a) Functional notation: Oy = LX (01, rs) )
b) Input: r;0y= (ti’ T, vi)
c) Output: Oy = (tX’ Ty vx)
d) Computations:
- -~ o~ - 2 i Z
At = [— (r1 vl) +\[(rt . Vi) vy (r - ri)}/v1
tx = t1 + At @
Ty = Ty + At vy
Vo =V
X 1
e) Comments:
Negative radicand in At equation means line does not
intersect sphere (possible only when Ty > rs).
B-4 CONIC PROPAGATION TO A SPECIFIED TIME
a) Functional notation: 0, = Ct ( s Oy tz)
b) Input: p; tz; Oy = (ti’ Ty Vi) )
(‘ c) Output: o, = (tz, T, VZ)




e a0t

[P

d) Computations:

Solve Kepler's problem to determine two-body state
vector at time tZ’ given the central body gravitational
parameter p and the state vector at time tl.'
e) Comments:
No explicit solution, Requires iteration. Numerous
subroutines available, Selenocentric state symbols
used for illustration only (function not restricted to

selenocentric state propagation).
B-5 CONIC PROPAGATION TO SPHERE ENTRY POINT

a) Functional notation: ON = CN ( s 04 rs)

b) Input: p; r 0= (ti’ T, vl)

% c) Output: ON = (tN’ rN,_vN)
d) Computations:

Solve explicit two-body equations for tN’ rN, and VN

at distance e using conic elements defined by p and

04, Impose ?N - ¥y <0 as a condition to get unique

solution,
e) Comments:

No solution if conic periapsis distance is greater than
r, or if apoapsis distance is less than o Selenocentric
state symbols used for illustration only (function not

restricted to selenocentric state propagaticn).
B-6 CONIC PROPAGATION TO SPHERE EXIT POINT

- a) Functional notation: Ox = CX (p., Oys rs)

-

T» b) Input: p; riog= (ti’ T vi)




d)

- 1

Output: Oy = (tx, Tys VX)
Corﬁputations:

Solve explicit two-body equations for tyr Ty and Vo
at distance r o using conic elements defined by p and
0,. Impose 'r’x . -\7X >0 as a condition to get unique

solution,
Comments:

No solution if conic periapsis distance is greater than
r., or if apoapsis distance is less than T Selenocentric

state symbols used for illustration only (function not

restricted to selenocentric state propagation).




APPENDIX C

REAL-TO-PSEUDOSTATE

TRANSFORMATION FUNCTIONS

C-1 PREPERICYNTHION LEG

S
a) Notation: I [ = Nr (O‘I, rs)

b) .Input: rs; O‘I = (tI, Tl VI)

R \ %N kN
c) Output: ZI —(tl, RI , VI )

d) Computations:

e} Comments:
Computations shown above apply when r

Ifr, 2 o tﬁen

*N
EI -G(OI)

C-2 POSTPERICYNTHION LEG

I

a) Notation: Z*X=X O T
I r{’I s

b) Input: r.i Op = (tI’ I VI)

I

<rTr.,.
s

LEPRUPIY U S v




¢) Output: I

( *X %X kX %
z = tI,
d) Computations:

c —
Ox = Cx (“m’ Op "s)

- *X _ c .
‘ Oy -Lt (ox, tI)

*X *X

ZI -G(OI)

e) Comments:
Computations shown above apply when T <r.

{
' If ry = T then

I

*¥X
z =G (01)




APPEANDIX D

PSEUDOSTATE-TO-REAL
TRANSFORMATION FUNCTIONS

D-1 PREPERICYNTHION LEG

. .. N Y R
, a) Notation: GK—Nr \2 K’ rs)

b) Input: r; Z 7N —’*N)

N _
K‘(tK' Rgs» Vg
T vK)

c) Output: O = (tKa K’

d) Computations:

% - X
o N_ g1 (z?{\’)

°® o )

ON Ok s

e e R R

_ c
% = Ct (”m’ N tK)

sestarior x4

e) Comments:

Computations shown above apply when r*g < o

*N
K

T a1 [o*N
ot (2)

D-2 POSTPERICYNTHION LEG

If r 2 T then

. ST ot X
a) Notation: oK-Xr (EK’ rs)

X _ =X kX

% (.’ b) - Input: T z K= (th R K* V' 1’;2)




"
""_";\
A
w4

c " itput: Cx
d) Computations:
g -
;X_Gi(fx)

~=K K

c _ *X

e¢) Comments:

X
Ier

K = rs, then

e d‘i (E*I){{)

. ES
Coniputations shown above apply when r I}{{ <r

s

O T I

K ot o R 4 b 00BN LT AR R Bttt o4
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APPENDIX E

PSEUDOSTATE-TO-PSEUDOSTATE
TRANSFORMATION FUNCTIONS

E-1 PREPERICYNTHION-TO-POSTPERICYNTHION

L o kX *N
a) Notation: Z 3 —XN(Z‘ T rs)

. C AN _ —=*N %N
b) Input: r; Ty = (tJ, RJ, VJ)

*X =X kY
c) Output: % 3 ‘(thRJ:VJ)
d) Computations:

#N _ -1 [ *N
0 =G (ZJ)

e) Comments: .
When propag..ting a ~:zal prepericynthion state
" vector to a point on the postpericynthicr leg of
the real trajectory, the pseudostate rmust be
transferred from the geocentric prepzricynthion
conic to the postpericynthion conic at or near the
real pericynthion passage time {within + one hour,

for typical lunar mission trajectories).



i

IS MU0 M o s . < o7 1VSTOBY i ncan, < 4 ¢ P+ et

POSTPERICYNTHION-TO-PREPERICYNTHION @

% .o%
a) Notation: y }\I = NX (z JX, rs)
b) Imput: r ;5 X=[t., R
)} Input: ri %o '(J’ 3
% —3 R
c) Output: 3 }\I = (tJ, R JI.\)‘, Vv 3 ) -

d) Computations:

oJ = Lt (O'N, tJ)
*N _ &N
EJ'G@J)

e) Comments:

When propagating a real postpericynthion state
vector to a point on the prepericynthion leg of

the real trajectory, the pseudostate must be
transferred from the geocentric postﬁericynthion
conic to the prepericynthion conic at or near the
real pericynthion passage time (within * one hour, -

for typical lunax mission trajectories).
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